Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 33116
1.  
i

Даны дроби  целая часть: 1, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8 , целая часть: 8, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , целая часть: 7, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , целая часть: 7, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8 . Ука­жи­те дробь, ко­то­рая равна дроби  дробь: чис­ли­тель: 57, зна­ме­на­тель: 8 конец дроби .

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8
2)  целая часть: 8, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8
3)  целая часть: 7, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8
4)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8
5)  целая часть: 7, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8
2.  
i

Даны си­сте­мы не­ра­венств. Ука­жи­те номер си­сте­мы не­ра­венств, ко­то­рая рав­но­силь­на си­сте­ме не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше 3,x\leqslant5. конец си­сте­мы .

1)  си­сте­ма вы­ра­же­ний x минус 2 боль­ше 1,x плюс 1\le6; конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний 2x боль­ше 3,x\le5; конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний x боль­ше 3,x плюс 2 \le3; конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний x плюс 1 боль­ше 2,x\le5; конец си­сте­мы .
5)  си­сте­ма вы­ра­же­ний x боль­ше 3, минус x\le5. конец си­сте­мы .
3.  
i

Ука­жи­те номер вер­но­го утвер­жде­ния:

 

1)   0,26 мень­ше 0,206

2)   6 в сте­пе­ни левая круг­лая скоб­ка 14 пра­вая круг­лая скоб­ка =36 в сте­пе­ни 4

3)   5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка =5 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка

4)    ко­рень из: на­ча­ло ар­гу­мен­та: 119 конец ар­гу­мен­та боль­ше 11

5)    минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 11 конец дроби боль­ше минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 11 конец дроби

1) 1
2) 2
3) 3
4) 4
5) 5
4.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но точки O.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
5.  
i

Ука­жи­те фор­му­лу для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если a1  =  2, a2  =  5.

1) a_n= минус 3n плюс 5
2) a_n=3n плюс 5
3) a_n=3n минус 1
4) a_n=2n плюс 5
5) a_n=5n плюс 2
6.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 1,4,1 минус 2x мень­ше 5. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  

1) 1
2) 2
3) 3
4) 4
5) 5
7.  
i

Точка A на­хо­дит­ся в узле сетки (см.рис).

Если точка B сим­мет­рич­на точке А от­но­си­тель­но на­ча­ла ко­ор­ди­нат, то длина от­рез­ка АВ равна:

1) 4
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
3) 6
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
5) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
8.  
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.

1) Число 2 крат­но числу 28.
2) Число 9 крат­но числу 47.
3) Число 612 крат­но числу 5.
4) Число 46 крат­но числу 0.
5) Число 192 крат­но числу 1.
9.  
i

Най­ди­те зна­че­ние вы­ра­же­ния НОК(6, 14, 42)+НОД(24,56).

1) 16
2) 84
3) 49
4) 50
5) 51
10.  
i

Из точки A к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и AC и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти O. Точки B, С, M лежат на окруж­но­сти (см. рис.). Из­вест­но, что BK  =  3, AC  =  8. Най­ди­те длину от­рез­ка AK.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та
2) 55
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 73 конец ар­гу­мен­та
4) 5
5) 3
11.  
i

Cумма пер­вых че­ты­рех чле­нов гео­мет­ри­че­ской про­грес­сии равна 45, зна­ме­на­тель про­грес­сии равен 2. Най­ди­те вто­рой член гео­мет­ри­че­ской про­грес­сии.

1) 6
2) 3
3) 12
4) 5
5) 2,5
12.  
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=24, \ctg \angle BAC = 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.

1) 48 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 9
3) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 8
5) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
13.  
i

Ука­жи­те но­ме­ра урав­не­ний, ко­то­рые не имеют дей­стви­тель­ных кор­ней.

 

1)   x в квад­ра­те плюс 1=0;

2)   x в квад­ра­те плюс x=0;

3)    дробь: чис­ли­тель: 1, зна­ме­на­тель: x в квад­ра­те минус 1 конец дроби =0;

4)   x в квад­ра­те =1;

5)   x в квад­ра­те плюс x минус 1=0

1) 1;3
2) 1;5
3) 2;3
4) 2;4
5) 4;5
14.  
i

Среди пред­ло­жен­ный урав­не­ний ука­жи­те номер урав­не­ния, гра­фи­ком ко­то­ро­го яв­ля­ет­ся па­ра­бо­ла, изоб­ра­жен­ная на ри­сун­ке:

1) y=2x в квад­ра­те минус 4x плюс 5
2) y=x в квад­ра­те плюс 4x плюс 5
3) y=x в квад­ра­те плюс 4x минус 5
4) y=2x в квад­ра­те плюс 4x плюс 5
5) y=2x в квад­ра­те минус 4x минус 5
15.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен ту­по­уголь­ный тре­уголь­ник ABC с вер­ши­на­ми в узлах сетки (см. рис.). Ко­си­нус угла ABC этого тре­уголь­ни­ка равен:

1)  минус дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
3)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби
5)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
16.  
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 3. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 6, то пло­щадь сферы равна:

1) 360 Пи
2) 192 Пи
3) 180 Пи
4) 90 Пи
5) 45 Пи
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но на­ча­ла ко­ор­ди­нат и про­хо­дит через точку A (3; 12). Зна­че­ние вы­ра­же­ния k + b равно:

1) 3
2) 4
3) 12
4) 15
5) −9
18.  
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =3 минус x равна (равен):

1)  дробь: чис­ли­тель: минус 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 73 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: минус 5 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 73 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 10
4) 5
5) −12
19.  
i

Для по­крас­ки стен общей пло­ща­дью 175 м2 пла­ни­ру­ет­ся за­куп­ка крас­ки. Объем и сто­и­мость банок с крас­кой при­ве­де­ны в таб­ли­це.

 

Объем банки

(в лит­рах)

Сто­и­мость банки с крас­кой

(в руб­лях)

2,5

85 000

10

290 000

 

Какую ми­ни­маль­ную сумму (в руб­лях) по­тра­тят на по­куп­ку не­об­хо­ди­мо­го ко­ли­че­ства крас­ки, если ее рас­ход со­став­ля­ет 0,2 л/м2?

20.  
i

Най­ди­те ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 121x минус x в кубе , зна­ме­на­тель: 2x конец дроби боль­ше 0.

21.  
i

Точки А(3;1), B(5;6) и C(6;6)  — вер­ши­ны тра­пе­ции ABCD (AD||BC). Най­ди­те сумму ко­ор­ди­нат точки D, если BD= ко­рень из 2 9.

22.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 6x плюс 5 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 19 минус 11x конец ар­гу­мен­та =0.

23.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 32 пра­вая круг­лая скоб­ка умно­жить на 11 в сте­пе­ни левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка боль­ше 22 в сте­пе­ни левая круг­лая скоб­ка 2x минус 19 пра­вая круг­лая скоб­ка .

24.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: x в квад­ра­те минус x минус 12, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 3x пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0.

25.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 4 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби .

26.  
i

В ос­но­ва­нии пи­ра­ми­ды лежит пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 6, ост­рый угол равен 60°. Каж­дая бо­ко­вая грань пи­ра­ми­ды на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом, рав­ным arccos дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 14 конец дроби . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

27.  
i

В ариф­ме­ти­че­ской про­грес­сии 130 чле­нов, их сумма равна 130, а сумма чле­нов с чет­ны­ми но­ме­ра­ми на 130 боль­ше суммы чле­нов с не­чет­ны­ми но­ме­ра­ми. Най­ди­те сотый член этой про­грес­сии.

28.  
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 4, вы­со­та пи­ра­ми­ды  — 2. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 3S.

29.  
i

Двое ра­бо­чих раз­лич­ной ква­ли­фи­ка­ции вы­пол­ни­ли не­ко­то­рую ра­бо­ту, при­чем пер­вый про­ра­бо­тал 4 часа, а затем к нему при­со­еди­нил­ся вто­рой. Если бы сна­ча­ла вто­рой ра­бо­чий ра­бо­тал 4 ч, а зачем к нему при­со­еди­нил­ся пер­вый, то ра­бо­ты была бы за­кон­че­на на 48 мин позже. Из­вест­но, что пер­вый ра­бо­чий вось­мую часть ра­бо­ты вы­пол­ня­ет на 3 часа быст­рее, чем вто­рой ра­бо­чий вы­пол­ня­ет ше­стую часть ра­бо­ты. Сколь­ко минут за­ня­ло вы­пол­не­ние всех ра­бо­ты?

30.  
i

Пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 5, вы­со­та, про­ве­ден­ная к ней равна 2, вра­ща­ет­ся во­круг пря­мой, пер­пен­ди­ку­ляр­ной ги­по­те­ну­зе и про­хо­дя­щей в плос­ко­сти тре­уголь­ни­ка через вер­ши­ну боль­ше­го остро­го угла. Най­ди­те объем V тела вра­ще­ния и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .